Rancang Bangun Sistem Pemberian Pakan Ikan Secara Otomatis Berdasarkan Perilaku Ikan Menggunakan Kamera Berbasis Mini PC
Main Article Content
Abstract
This research was conducted because fish feeders are often forgotten by fish owners, so the researchers created an automatic fish feeding system using the Raspberry Pi, Camera Module-v2, Accelerometer Sensor, and Servo Motor. The way this tool works is the reading of water ripples carried out by the accelerometer sensor which later can get a trigger value to turn on the camera module-v2 and take pictures of the fish, the resulting image will be processed to identify the fish's mouth and calculate the number of fish mouths that appear to the surface. When the system can detect the number of fish mouths, the fish is hungry and the servo motor will open the food valve to release the fish food, but when the number of fish mouths is 0 or not detected, the servo motor will not open.
Article Details
References
[2] A. Rosa Andrie, Irawati Nurmala Sari, Vvid Ichtarosa Arinda. 2017. Rancang Bangun Penghitung Benih Ikan Menggunakan Binary Thresholding pada Raspberry Pi secara Real Time. Malang: Politeknik Negeri Malang.
[3] Fadillah, Nuzul Imam, Ahmad arifuddin. 2018. Pembuatan Alat Pendeteksi Gempa Menggunakan Accelerometer Berbasis Arduino. Purwokerto: AMIK BSI Purwokerto
[4] Girshick, R. 2015. Fast R-CNN. 2015. IEEE International Conference on Computer Vision (ICCV). doi:10.1109/iccv.2015.169
[5] Heryadi, Yaya, Edy Irwansyah. 2020. Deep Learning Dan Aplikasinya Di Bidang Informasi Geospasial. Jawa Barat: PT. Artifisia Wahana Informa Teknologi.
[6] Hidayat, Muhammad Arief, Gibtha Fitri Laxmi, Puspa Eosina. 2018. Identifikasi Ikan Air Tawar dengan Metode Fuzzy Local Pattern. Bogor: Universitas Ibn Khaldun Bogor.
[7] Invensense. 2013. MPU6050 Datasheet. Mpu6000 DAn Mpu6050 Product Specification
[8] Jupiyandi, Sisco, Fadhil Rizqullah, Saniputra, Yoga Pratama, Muhammad Robby Dharmawan, Imam Cholissodin. Pengembangan Deteksi Citra Mobil Untuk Mengetahui Jumlah Tempat Parkir Menggunakan Cuda Dan Modified Yolo. 2019. Malang: universitas brawijaya MakerBot Thingiverse. Rapberry Pi Camera V2.
[9] Maulana, Iqbal, Kharisma Nur H. 2014. Motor Servo DC. Bandung: Politeknik Negeri Bandung.
[10]Putra, Reza Utama, Lukmanul Hakim, Herri Gusmedi. 2014. Studi Analisis Perbaikan Stabilitas Tegangan Melalui Penjadwalan Ulang Generator. Bandar Lampung: Universitas Lampung
[11] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi:10.1109/cvpr.2016.91
[12] Suhendra, eddo Frans. 2018. Perancangan Sistem Pemberian Pakan Ikan Otomatis Berbasis Mikrokontroler Berdasarkan Perilaku Kemunculan Ikan ke Permukaan. Padang: Universitas Andalas.
[13] Syahid, Nur Ahmad, Dr. Muhammad Rivai S.T., M.T., dan Suwito, S.T., M.T. 2016. Sistem Keamanan pada Lingkungan Pondok Pesantren Menggunakan Raspberry Pi. Surabaya: Institut Teknologi Sepuluh Nopember.
[14] Twigg, David. 2013. Buku Pintar Koi. Jakarta: Gramedia Pustaka Utama. Google
[15] Zhang, W. J., Yang, G., Lin, Y., Ji, C., & Gupta, M. M. 2018. On Definition of Deep Learning. 2018 World Automation Congress (WAC). doi:10.23919/wac.2018.8430387