Penghitung Pengunjung dan Deteksi Masker Menggunakan OpenCV dan YOLO

Main Article Content

Agung Wibowo Ardiyanta Surbakti
Rahmi Eka Putri

Abstract

The spread of COVID-19 that occurs through droplets can be avoided by reducing contact between individuals, so it is necessary to limit visitors, especially in crowded places such as shopping centers to avoid transmission between visitors. This study utilizes YOLOv3 object detection to recognize objects from camera image input, which is implemented on the Raspberry Pi 4, to identify visitors and use masks. The results of the identification of human objects will be calculated to determine the number of visitors at the shopping center. Then a buzzer sound warning is given when visitors are not wearing masks, if visitors exceed the capacity limit, they are also given a warning via an android application to the building manager. The results of the model detection show the mAP value of 77.92% for 3 classes of mask objects, without masks and humans.

Article Details

How to Cite
[1]
SurbaktiA. W. A. and Eka PutriR., “Penghitung Pengunjung dan Deteksi Masker Menggunakan OpenCV dan YOLO”, chipset, vol. 3, no. 02, pp. 83-93, Oct. 2022.
Section
Articles

References

[1] WHO, "who.int," World Health Organization, 11 03 2020. [Online]. Available: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. [Accessed 28 06 2020].
[2] B. Baskara, "Kompas.id," Kompas, 18 04 2020. [Online]. Available: https://bebas.kompas.id/baca/riset/2020/04/18/rangkaian-peristiwa-pertama-covid-19/. [Accessed 28 06 2020].
[3] D. Krisrenanto, M. Rivai and d. F. Budiman, "Identifikasi Jumlah dan Tingkat Aktivitas Orang," JURNAL TEKNIK ITS , vol. 6, pp. 2337-3539, 2017.
[4] D. Y. Setiawan, H. Fitriyah and I. Arwani, "Sistem Penghitung Jumlah Orang Melewati Pintu Menggunakan Metode," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, pp. 2105-2113, 2019.
[5] M. A. Shereen, S. Khan, A. Kazmi and N. Bashir, "COVID-19 infection: Origin, transmission, and characteristics of human," Journal of Advanced Research, vol. 24, pp. 91-98, 2020.
[6] "stoppneumonia.id," Yayasan Sayangi Tunas Cilik (YSTC), 2020. [Online]. Available: https://stoppneumonia.id/informasi-tentang-virus-corona-novel-coronavirus/. [Accessed 28 06 2020].
[7] Kompas.id, "bebas.kompas.id," Kompas, 18 04 2020. [Online]. Available: https://bebas.kompas.id/baca/riset/2020/04/18/rangkaian-peristiwa-pertama-covid-19/. [Accessed 28 07 2020].
[8] Gugus Tugas Percepatan Penanganan COVID-19, "covid19.go.id/," Gugus Tugas Percepatan Penanganan COVID-19, 28 07 2020. [Online]. Available: https://covid19.go.id/peta-sebaran. [Accessed 28 07 2020].
[9] OpenCV team, "opencv.org," OpenCV team, 2020. [Online]. Available: https://opencv.org/about/. [Accessed 28 07 2020].
[10] R. F. Kevin Rahmat Trisnoyo, "Tabungan Pintar Berbasis Single Board Computer," CHIPSET (Journal on Computer Hardware, Signal Processing Embedded System and Networking), vol. 1, no. Vol. 1 No. 02 (2020): Journal on Computer Hardware, Signal Processing, Embedded System and Networking, pp. 53-60, 2020.
[11] J. a. F. A. Redmon, "YOLOv3: An Incremental Improvement," arXiv, 2018.
[12] R. F. A. Muhammad Abdul Hadi, "Klasifikasi Tingkat Ancaman Kriminalitas Bersenjata Menggunakan Metode You Only Look Once (YOLO)," Journal on Computer Hardware, Signal Processing, Embedded System and Networking, vol. 2, no. Vol. 2 No. 01 (2021): Journal on Computer Hardware, Signal Processing, Embedded System and Networking, pp. 33-40, 2021.
[13] T. R. P. Foundation, "raspberrypi.org," The Raspberry Pi Foundation, [Online]. Available: https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/. [Accessed 25 07 2020].
[14] Rasberry Foundation, "raspberrypi.org," Rasberry Foundation, 2020. [Online]. Available: https://www.raspberrypi.org/products/camera-module-v2/. [Accessed 04 08 2020].
[15] T. A. Guy, "Youtube," 28 January 2020. [Online]. Available: https://www.youtube.com/watch?v=10joRJt39Ns. [Accessed Januari 2021].
[16] AlexeyAB, "Github," [Online]. Available: https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects. [Accessed Januari 2021].